Gravitation - Past Paper Questions

1. The following data refer to two planets.

	radius/km	density/kg m ⁻³
planet P	8000	6000
planet Q	16000	3000

The gravitational field strength at the surface of P is 13.4 N kg^{-1} . What is the gravitational field strength at the surface of Q?

- **A** 3.4 N kg^{-1}
- **B** 13.4 N kg^{-1}
- $C = 53.6 \text{ N kg}^{-1}$
- $\mathbf{D} = 80.4 \text{ N kg}^{-1} \tag{1}$
- 2. The gravitational field strength at the surface of a planet, X, is 19 N kg⁻¹.

(a)	(i)	Calculate the gravitational potential difference between the surface of X and a point 10 m above the surface, if the gravitational field can be considered to be uniform over such a small distance.		
	(ii)	Calculate the minimum amount of energy required to lift a $9.0\mathrm{kg}$ rock a vertical distance of $10\mathrm{m}$ from the surface of X.		
	(iii)	State whether the minimum amount of energy you have found in part (a)(ii) would be different if the 9.0 kg mass were lifted a vertical distance of 10 m from a point near the top of the highest mountain of planet X. Explain your answer.		
(b)	Calcu	late the gravitational field strength at the surface of another planet, Y, that has the same mass		

as planet X, but twice the diameter of X.

 •••••	 	••••••

(2)

(3)

(a)	State, in words, Newton's law of gravitation.		
(b)		gravitational constant, G , were regarded as ing the gravitational force acting on a mass at the dius R , show that the mass of the Earth is given by	
	$M = \frac{gR^2}{G},$		
	where g is the value of the gravitational field st	rength at the Earth's surface.	
(c)	In the following calculation use these data.		
	radius of the Moon	$= 1.74 \times 10^6 \text{ m}$	
	gravitational field strength at Moon's surface	$= 1.62 \text{ N kg}^{-1}$	
	mass of the Earth M gravitational constant G	$= 6.00 \times 10^{24} \text{ kg}$ = $6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$	
	Calculate the mass of the Moon and express its mass as a percentage of the mass of the Earth.		

(Total 7 marks)